首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54460篇
  免费   4308篇
  国内免费   3058篇
  2024年   35篇
  2023年   641篇
  2022年   782篇
  2021年   1271篇
  2020年   1247篇
  2019年   1630篇
  2018年   1640篇
  2017年   1165篇
  2016年   1342篇
  2015年   1935篇
  2014年   2828篇
  2013年   3864篇
  2012年   2075篇
  2011年   2877篇
  2010年   2310篇
  2009年   2909篇
  2008年   3123篇
  2007年   3190篇
  2006年   2894篇
  2005年   2866篇
  2004年   2510篇
  2003年   2243篇
  2002年   2076篇
  2001年   1382篇
  2000年   1159篇
  1999年   1226篇
  1998年   1121篇
  1997年   916篇
  1996年   737篇
  1995年   950篇
  1994年   875篇
  1993年   778篇
  1992年   685篇
  1991年   492篇
  1990年   401篇
  1989年   371篇
  1988年   386篇
  1987年   350篇
  1986年   287篇
  1985年   344篇
  1984年   472篇
  1983年   311篇
  1982年   311篇
  1981年   196篇
  1980年   182篇
  1979年   153篇
  1978年   88篇
  1977年   49篇
  1976年   52篇
  1975年   31篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
DNA replication is a fundamental process of the cell that ensures accurate duplication of the genetic information and subsequent transfer to daughter cells. Various pertubations, originating from endogenous or exogenous sources, can interfere with proper progression and completion of the replication process, thus threatening genome integrity. Coordinated regulation of replication and the DNA damage response is therefore fundamental to counteract these challenges and ensure accurate synthesis of the genetic material under conditions of replication stress. In this review, we summarize the main sources of replication stress and the DNA damage signaling pathways that are activated in order to preserve genome integrity during DNA replication. We also discuss the association of replication stress and DNA damage in human disease and future perspectives in the field.  相似文献   
22.
23.
Drosophila melanogaster sarcomere length short (SALS) is a recently identified Wiskott-Aldrich syndrome protein homology 2 (WH2) domain protein involved in skeletal muscle thin filament regulation. SALS was shown to be important for the establishment of the proper length and organization of sarcomeric actin filaments. Here, we present the first detailed characterization of the biochemical activities of the tandem WH2 domains of SALS (SALS-WH2). Our results revealed that SALS-WH2 binds both monomeric and filamentous actin and shifts the monomer-filament equilibrium toward the monomeric actin. In addition, SALS-WH2 can bind to but fails to depolymerize phalloidin- or jasplakinolide-bound actin filaments. These interactions endow SALS-WH2 with the following two major activities in the regulation of actin dynamics: SALS-WH2 sequesters actin monomers into non-polymerizable complexes and enhances actin filament disassembly by severing, which is modulated by tropomyosin. We also show that profilin does not influence the activities of the WH2 domains of SALS in actin dynamics. In conclusion, the tandem WH2 domains of SALS are multifunctional regulators of actin dynamics. Our findings suggest that the activities of the WH2 domains do not reconstitute the presumed biological function of the full-length protein. Consequently, the interactions of the WH2 domains of SALS with actin must be tuned in the cellular context by other modules of the protein and/or sarcomeric components for its proper functioning.  相似文献   
24.
The endoplasmic reticulum is the main intracellular Ca2+ store for Ca2+ release during cell signaling. There are different strategies to avoid ER Ca2+ depletion. Release channels utilize first Ca2+-bound to proteins and this minimizes the reduction of the free luminal [Ca2+]. However, if release channels stay open after exhaustion of Ca2+-bound to proteins, then the reduction of the free luminal ER [Ca2+] (via STIM proteins) activates Ca2+ entry at the plasma membrane to restore the ER Ca2+ load, which will work provided that SERCA pump is active. Nevertheless, there are several noxious conditions that result in decreased activity of the SERCA pump such as oxidative stress, inflammatory cytokines, and saturated fatty acids, among others. These conditions result in a deficient restoration of the ER [Ca2+] and lead to the ER stress response that should facilitate recovery of the ER. However, if the stressful condition persists then ER stress ends up triggering cell death and the ensuing degenerative process leads to diverse pathologies; particularly insulin resistance, diabetes and several of the complications associated with diabetes. This scenario suggests that limiting ER stress should decrease the incidence of diabetes and the mobility and mortality associated with this illness.  相似文献   
25.
Proteolysis of the hydroxylase component of soluble methane monooxygenase (MMO) with trypsin yielded a protein which retained 50% activity in a standard MMO assay. In an H2O2-driven assay, in which H2O2 replaced two of the protein components, NADH and O2 used in the standard assay, the proteolysed hydroxylase retained full activity for ethane, propane and propene, but had a 2–3 fold increase with methane as substrate. Several crosslinking reagents have been tested for their ability to stabilise the proteolysed form of the hydroxylase. Using polyoxyethylene bis(imidazolyl carbonyl) (Mr 3350) as the crosslinking agent, increased thermostability of the hydroxylase was observed. Activated methoxypolyethylene glycol (Mr 5000) was used to modify the hydroxylase which was now soluble in organic solvents as well as water and could be activated by H2O2. The glycol-modified hydroxylase functioned well in organic solvents in the catalysis of propene oxidation.  相似文献   
26.
Identification of an interleukin-1 beta binding protein in human plasma   总被引:5,自引:0,他引:5  
J.A. Eastgate  J.A. Symons  G.W. Duff   《FEBS letters》1990,260(2):217-219
A covalent cross-linking technique was used to bind iodinated interleukin-1 (IL1) alpha and beta to plasma proteins. One specific IL1 beta binding protein was observed, that when cross-linked to 125I-ILl beta migrated to approximately 60 kDa on SDS-PAGE. The protein did not bind IL1 alpha. The 43 -kDa protein was partially purified using a wheat germ agglutinin affinity column. The isolated factor again specifically bound IL1 beta, and appeared to consist of single chain glycoprotein. The protein was heat stable and had a rapid association time with IL1 beta. This protein may be an important carrier molecule for IL1 beta in vivo.  相似文献   
27.
28.
High level expression of the major auxin-binding protein (ABP1) from maize (Zea maysL.) has been used to demonstrate that the machinery for retaining proteins in the endoplasmic reticulum (ER) of insect cells functions efficiently throughout the baculovirus infection cycle. Immuno-localization showed wild-type ABP1 (ABP1-KDEL) to be targeted to the lumen of the ER, in accordance with its signal peptide and carboxyterminal KDEL ER-retention signal. The protein accumulated in dilations of the ER, and none was detected at the cell surface. Immunoblotting of concentrated culture medium confirmed that ABP1-KDEL was not secreted at a detectable level. In contrast, when the carboxyterminus was mutated to KEQL, secretion of the baculovirus-expressed protein was readily detected. Immunolocalization and immunoblotting demonstrated that a high proportion of the ABP1-KEQL protein was secreted at the cell surface and into the culture medium. The data demonstrate that the ER of insect cells has a great capacity to retain proteins and that this property is largely unaffected by the cellular disruption caused by baculovirus replication.  相似文献   
29.
Wu  Hong  Liu  Xiang-Qin 《Plant molecular biology》1997,34(2):339-343
The Guillardia theta chloroplast hlpA gene encodes a protein resembling bacterial histone-like protein HU. This gene was cloned and overexpressed in Escherichia coli cells, and the resulting protein product, HlpA, was purified and characterized in vitro. In addition to exhibiting a general DNA-binding activity, the chloroplast HlpA protein also strongly facilitated cyclization of a short DNA fragment in the presence of T4 DNA ligase, indicating its ability to mediate very tight DNA curvatures.  相似文献   
30.
贝壳历来是生物工程和材料学研究的重要对象。贝壳中的贝壳基质蛋白质在贝壳的形成与发育过程中具有重要的调控作用。Whirlin类蛋白质(Whirlin-like protein,WLP)是一种从厚壳贻贝(Mytilus coruscus)中鉴定的新型贝壳基质蛋白质。序列分析结果显示,该蛋白质含有PDZ(postsynaptic density/Discs large/Zonula occludens)结构域,而该结构域对贝壳生物矿化的影响目前尚无报道。为深入了解WLP在贝壳形成中对碳酸钙晶体的影响,在序列分析基础上,采用密码子优化结合原核重组表达,获得其重组表达产物后,开展了重组WLP对碳酸钙晶体形貌及晶型的影响研究,结晶速度抑制以及碳酸钙晶体结合分析。分析结果表明,重组WLP能诱导文石型碳酸钙晶体的形貌和方解石型碳酸钙晶体的晶型发生改变;同时重组WLP对碳酸钙晶体具有结合作用,且能抑制碳酸钙晶体的结晶速度。上述结果表明,WLP对贝壳的形成及发育具有重要影响,并可能在贝壳肌棱柱层的形成中发挥了重要作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号